

FIN - Future is Now Kuster Energielösungen GmbH Jan Kuster Hellbrunnerstraße 41 5081 Anif +43 660 7350822 office@vollsolar.at

ENERGIEAUSWEIS

Ist-Zustand

Obererstadtplatz 7-8 - Kindergarten I

Stadtgemeinde Waidhofen a/d Ybbs / Philipp Peham BA, MSc.
Oberer Stadtplatz 28
3340 Waidhofen an der Ybbs

Typ: Bestand

Energieausweis für Nicht-Wohngebäude

ÖJB ÖSTERREICHISCHES OIB-Richtlinie 6
INSTITUT FÜR BAUTECHNIK Ausgabe: April 2019

BEZEICHNUNG Obererstadtplatz 7-8 - Kindergarten I Umsetzungsstand lst-Zustand

Gebäude(-teil) Kindergarten (EG) Baujahr 1550

Nutzungsprofil Bildungseinrichtungen Letzte Veränderung Fenstertausch (2002) Straße Obererstadtplatz 7-8 Katastralgemeinde Waidhofen an der Ybbs

PLZ/Ort 3340 Waidhofen an der Ybbs KG-Nr. 3329 Grundstücksnr. Seehöhe 355 m

SPEZIFISCHER REFERENZ-HEIZWÄRMEBEDARF, PRIMÄRENERGIEBEDARF, KOHLENDIOXIDEMISSIONEN und GESAMTENERGIEEFFIZIENZ-FAKTOR jeweils unter STANDORTKLIMA-(SK)-Bedingungen HWB Ref,SK PEB_{SK} CO 2eq,SK

HWB_{Rof}. Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der Warmwasserwärmebedarf ist in Abhängigkeit der Gebäudekategorie flächenbezogener Defaultwert festgelegt

HEB: Beim **Heizenergiebedarf** werden zusätzlich zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

KB: Der Kühlbedarf ist jene Wärmemenge, welche aus den Räumen abgeführt werden muss, um unter der Solltemperatur zu bleiben. Er errechnet sich aus den nicht nutzbaren inneren und solaren Gewinnen.

BefEB: Beim Befeuchtungsenergiebedarf wird der allfällige Energiebedarf zur

KEB: Beim Kühlenergiebedarf werden zusätzlich zum Kühlbedarf die Verluste des Kühlsystems und der Kältebereitstellung berücksichtigt

RK: Das Referenzklima ist ein virtuelles Klima. Es dient zur Ermittlung von

BelEB: der Beleuchtungsenergiebedarf ist als flächenbezogener Defaultwert festgelegt und entspricht dem Energiebedarf zur nutzungsgerechten Beleuchtung. **BSB**: Der **Betriebsstrombedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht der Hälfte der mittleren inneren Lasten.

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den jeweils allfälligen Betriebsstrombedarf, Kühlenergiebedarf und Beleuchtungsenergiebedarf, abzüglich allfälliger Endenergieerträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

feɛɛ: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der **Primärenergiebedarf** ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB _{erm.}) und einen nicht erneuerbaren (PEB _{n.em.}) Anteil auf.

CO₂eq: Gesamte dem Endenergiebedarf zuzurechnenden äquivalenten Kohlendioxidemissionen (Treibhausgase), einschließlich jener für Vorketten.

SK: Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU vom 19. Mai 2010 über die Gesamtenergieeffizienz von Gebäuden bzw. 2018/844/EU vom 30. Mai 2018 und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist für Strom: 2013-09 – 2018-08, und es wurden übliche Allokationsregeln unterstellt.

Eingang am 18. Feb. 2025 ZEUS Nr. 3329.25.30899.01

Typ: Bestand

Energieausweis für Nicht-Wohngebäude

GEBÄUDEKENNDATEN				EA-A	Art:
Brutto-Grundfläche (BGF)	387,4 m²	Heiztage	365 d	Art der Lüftung	Fensterlüftung
Bezugsfläche (BF)	309,9 m²	Heizgradtage	3 672 Kd	Solarthermie	- m²
Brutto-Volumen (V _B)	1 260,3 m³	Klimaregion	NF	Photovoltaik	- kWp
Gebäude-Hüllfläche (A)	641,8 m ²	Norm-Außentemperatur	-14,1 °C	Stromspeicher	-
Kompaktheit (A/V)	0,51 1/m	Soll-Innentemperatur	22,0 °C	WW-WB-System (primär)	
charakteristische Länge (lc)	1,96 m	mittlerer U-Wert	1,15 W/m ² K	WW-WB-System (sekundär	r, opt.)
Teil-BGF	- m²	LEK _T -Wert	87,20	RH-WB-System (primär)	
Teil-BF	- m²	Bauweise	schwer	RH-WB-System (sekundär,	opt.)
Teil-V _B	- m³			Kältebereitstellungs-System	ı

WÄRME- UND ENERGIEBEDARF (Referenzklima)

Ergebnisse

Referenz-Heizwärmebedarf $HWB_{Ref,RK} = 167,4 \text{ kWh/m}^2\text{a}$ $HWB_{RK} = 172,4 \text{ kWh/m}^2\text{a}$ Heizwärmebedarf Außeninduzierter Kühlbedarf $KB_{RK}^* = 0.0 \text{ kWh/m}^3 \text{a}$ Endenergiebedarf $EEB_{RK} = 212,3 \text{ kWh/m}^2\text{a}$ Gesamtenergieeffizienz-Faktor $f_{GEE,RK} = 2,30$

WÄRME- UND ENERGIEBEDARF (Standortklima)

Referenz-Heizwärmebedarf	$Q_{h,Ref,SK} =$	73 968 kWh/a	$HWB_{Ref,SK} = 190.9 \text{ kWh/m}^2\text{a}$
Heizwärmebedarf	$Q_{h,SK} =$	76 164 kWh/a	HWB $_{SK}$ = 196,6 kWh/m ² a
Warmwasserwärmebedarf	Q _{tw} =	1 042 kWh/a	WWWB = $2.7 \text{ kWh/m}^2\text{a}$
Heizenergiebedarf	Q _{HEB,SK} =	83 703 kWh/a	$HEB_{SK} = 216,1 \text{ kWh/m}^2\text{a}$
Energieaufwandszahl Warmwasser			$e_{AWZ,WW} = 4,47$
Energieaufwandszahl Raumheizung			$e_{AWZ,RH} = 1,07$
Energieaufwandszahl Heizen			e _{AWZ,H} = 1,12
Betriebsstrombedarf	Q _{BSB} =	814 kWh/a	$BSB = 2,1 \text{ kWh/m}^2\text{a}$
Kühlbedarf	Q _{KB,SK} =	0 kWh/a	$KB_{SK} = 0.0 \text{ kWh/m}^2\text{a}$
Kühlenergiebedarf	Q _{KEB,SK} =	- kWh/a	$KEB_{SK} = - kWh/m^2a$
Energieaufwandszahl Kühlen			$e_{AWZ,K} = 0.00$
Befeuchtungsenergiebedarf	$Q_{BefEB,SK} =$	- kWh/a	BefEB _{SK} = $- kWh/m^2a$
Beleuchtungsenergiebedarf	Q _{BelEB} =	7 686 kWh/a	BelEB = 19,8 kWh/m²a
Endenergiebedarf	Q _{EEB,SK} =	92 203 kWh/a	$EEB_{SK} = 238,0 \text{ kWh/m}^2\text{a}$
Primärenergiebedarf	Q _{PEB,SK} =	147 925 kWh/a	$PEB_{SK} = 381,9 \text{ kWh/m}^2\text{a}$
Primärenergiebedarf nicht erneuerbar	$Q_{PEBn.ern.,SK} =$	35 698 kWh/a	$PEB_{n.ern.,SK} = 92,2 \text{ kWh/m}^2\text{a}$
Primärenergiebedarf erneuerbar	$Q_{PEBern.,SK} =$	112 227 kWh/a	$PEB_{ern.,SK} = 289,7 \text{ kWh/m}^2\text{a}$
äquivalente Kohlendioxidemissionen	$Q_{CO2eq,SK} =$	7 683 kg/a	$CO_{2eq,SK} = 19.8 \text{ kg/m}^2\text{a}$
Gesamtenergieeffizienz-Faktor			$f_{GEE,SK} = 2,34$
Photovoltaik-Export	Q _{PVE,SK} =	- kWh/a	$PVE_{EXPORT,SK} = - kWh/m^2a$

ERSTELLT

GWR-Zahl ErstellerIn FIN - Future is Now Kuster Energielösungen GmbH Hellbrunnerstraße 41, 5081 Anif

Ausstellungsdatum 18.02.2025 FIN - Future is Now Kuster Effergielbeungen GmbH Energieplanung/ Ingenieurbüro Goldensteinstraße 9a 5061 Eisbethen - Österreich fin@futureisnow.eu - www.futureisnow.eu Unterschrift Gültigkeitsdatum 17.02.2035

Geschäftszahl

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

Datenblatt GEQ Obererstadtplatz 7-8 - Kindergarten I

Anzeige in Druckwerken und elektronischen Medien

HWB_{Ref,SK} 191 f_{GEE,SK} 2,34

Gebäudedaten

Brutto-Grundfläche BGF 387 m 2 charakteristische Länge I $_{\rm c}$ 1,96 m Konditioniertes Brutto-Volumen 1 260 m 3 Kompaktheit A $_{\rm B}$ / V $_{\rm B}$ 0,51 m $^{-1}$

Gebäudehüllfläche A_B 642 m²

Ermittlung der Eingabedaten

Geometrische Daten: Begehung vor Ort, Unterlagen Bauherr, 25.09.24
Bauphysikalische Daten: Begehung vor Ort, Unterlagen Bauherr, 25.09.24
Haustechnik Daten: Begehung vor Ort, Unterlagen Bauherr, 25.09.24

Haustechniksystem

Raumheizung: Nah-/Fernwärme (Fernwärme aus Heizwerk (erneuerbar))

Warmwasser Stromheizung direkt (Strom)

Lüftung: Fensterlüftung

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH - www.geq.at
Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6-1 / Unkonditionierte
Gebäudeteile vereinfacht nach ON B 8110-6-1 / Wärmebrücken pauschal nach ON B 8110-6-1 / Verschattung vereinfacht nach ON B 8110-6-1

Verwendete Normen und Richtlinien:

ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6-1 / ON H 5056-1 / ON H 5057-1 / ON H 5058-1 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / OIB-Richtlinie 6 Ausgabe: April 2019

Anmerkung

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Typ: Bestand

Empfehlungen zur Verbesserung Obererstadtplatz 7-8 - Kindergarten I

Gebäudehülle

- Fenstertausch

Haustechnik

- Einbau eines Regelsystems zur Optimierung der Wärmeabgabe
- Einregulierung / hydraulischer Abgleich
- Optimierung der Betriebszeiten
- Optimierung der Beleuchtung

Im Anhang des Energieausweises ist anzugeben (OIB 2019): Empfehlung von Maßnahme deren Implementierung den Endenergiebedarf des Gebäudes reduziert und technisch und wirtschaftlich zweckmäßig ist.

Projektanmerkungen Obererstadtplatz 7-8 - Kindergarten I

Allgemein

Der vorliegend Energieausweis stellt kein Gutachten im Sinne des § 1299 ABGB bzw. §§ 52f AVG dar. Die berechnete Heizlast kann von jener gemäß ÖNORM H 7500 bzw. EN ISO 12831 abweichen und ersetzt nicht den Nachweis der Gebäude-Normheizlast gemäß ÖNORM H 7500 bzw. EN ISO 12831.

Die vereinfachte Heizlast berücksichtigt nicht die Aufheizleistungen und gilt nur für Standardfälle. Die ausgewiesenen Bauteilflächen können aufgrund der Verknüpfung mit Fensterflächen und anderen Gebäudebauteilflächen von den realen Flächenwerten des Gebäudes abweichen und dürfen daher bei Maßnahmen an der Außenfassade nicht für Anbotslegung und Rechnungskontrolle herangezogen werden.

Dieser Energieausweis darf nur vollinhaltlich, ohne Weglassung oder Hinzufügung, veröffentlicht werden. Wird er auszugsweise vervielfältigt, so ist vorab die Genehmigung des Erstellers einzuholen.

Bauteile

Die Berechnung erfolgte Aufgrund der Angaben des Auftraggebers (Fenster- und Türgrößen, Wand- und Deckenaufbauten), wobei die Abmessungen der Fenster vor Ort erhoben wurden. Über eineige Bauteilschichten gibt es keine Aufzeichnungen, der Bodenaufbau des Kindergartens wurde jedoch im Zuge des Ausbaus saniert. Das alter des Bodenaufbaus entspricht somit dem Ausbaujahr 1970, die Kappendecken sowie die tragende Schicht ist anzunehmend nicht saniert worden.

Die zur Verfügung gestellten Unterlagen weisen teilweise keine detaillierte Beschreibung der Decken- und Wandaufbauten und der Fenster auf.

Im Zweifelsfall dürfen daher laut OIB-Richtlinie 6 für diese Bauzeit übliche Bauweisen verwendet werden. Die Decken- und Wandaufbauten wurden am Bestandsgebäude sorgfältig erhoben, allerdings konnten nicht alle Bauteile im Querschnitt geprüft werden.

Sollte sich aufgrund von etwaigen Abbruch- oder Umbauarbeiten die Informationssituation hinsichtlich Bauteilaufbauten wesentlich verändern, so müßte dieser Energieausweis adaptiert werden.

Geometrie

Die verwendeten Außen- und Höhenmaße wurden den zur Verfügung gestellten Plänen entnommen und vor Ort überprüft.

Haustechnik

Die Heizlastabschätzung des Energieausweises für Raumheizung und Warmwasser entspricht nicht der Heizlastberechnung nach ÖNORM H 7500 bzw. EN ISO 12831 und ist folglich auch nicht für die Auslegung der Heizungsanlage vorgesehen.

Für weiterführende Berechnungen, Schlüsse oder Ableitungen über die Wärmeverluste oder des Heizwärmebedarfes müssen die getroffenen Annahmen im Energieausweis berücksichtigt werden.

Der durch das standardisierte Programm GEQ berechnete Energieausweis wurde dem normativ festgelegten Nutzungsprofil nach der ÖNORM H 5055 erstellt. Das Ergebnis kann in der Praxis erheblich von den tatsächlichen Verbrauchswerten abweichen.

Heizlast Abschätzung

Obererstadtplatz 7-8 - Kindergarten I

Abschätzung der Gebäude-Heizlast auf Basis der **Energieausweis-Berechnung**

Berechnungsblatt

Planer / Baufirma / Hausverwaltung Bauherr

Stadtgemeinde Waidhofen a/d Ybbs

Oberer Stadtplatz 28

Norm-Außentemperatur:

3340 Waidhofen an der Ybbs

Tel.: Tel.:

-14,1 °C Berechnungs-Raumtemperatur: 22 °C Brutto-Rauminhalt der

Temperatur-Differenz: 36,1 K beheizten Gebäudeteile: 1 260,28 m³

> Gehäudehüllfläche: 641 75 m²

Standort: Waidhofen an der Ybbs

	Gebäudel	nüllfläche:	641	1,75 m²
Bauteile	Fläche A	Wärmed koeffizient U	Korr faktor f	Leitwert
	[m²]	[W/m² K]	[1]	[W/K]
AW01 (W) - Außenwand Naturstein (im Mittel 0,9 m)	52,49	1,558	1,00	81,80
AW02 (W) - Außenwand Naturstein (im Mittel 0,7 m)	44,22	1,803	1,00	79,72
AW03 (W) - Außenwand Naturstein (im Mittel 0,5 m)	34,78	2,138	1,00	74,37
AW04 (W) - Außenwand Anbau 1970	19,41	1,244	1,00	24,15
FD01 (D) - Außendecke zu Terrasse, Anbau 1970	7,17	0,650	1,00	4,66
FE/TÜ Fenster u. Türen	49,67	1,917		95,20
EB01 (D) - erdanliegender Fußboden (<=1,5m unter Erdreich)	353,38	1,000	0,70	247,37
KD01 (D) - Decke zu unkonditioniertem ungedämmten Keller	34,00	0,855	0,70	20,34
IW01 (W) - Zwischenwand Naturstein (im Mittel 0,9 m)	46,62	1,367	0,70	44,61
ZD01 (D) - warme Zwischendecke (Holztramdecke)	168,08	0,684		
ZD02 (D) - warme Zwischendecke (Kappendecke / Ziegeldecke)	145,00	1,301		
ZD03 (D) - warme Zwischendecke (Abhangdecke)	67,14	0,580		
ZW01 (W) - Zwischenwand Naturstein (im Mittel 0,5 m)	48,59	1,793		
Summe OBEN-Bauteile	7,17			
Summe UNTEN-Bauteile	387,38			
Summe Zwischendecken	380,22			
Summe Außenwandflächen	150,91			
Summe Innenwandflächen	46,62			
Summe Wandflächen zum Bestand	48,59			
Fensteranteil in Außenwänden 24,8 %	49,67			
Summe			[W/K]	672
Wärmebrücken (vereinfacht) Transmissions - Leitwert Lüftungs - Leitwert			[W/K] [W/K] [W/K]	67 739,43 315,05
Gebäude-Heizlast Abschätzung	Luftwechsel =	= 1.15 1/h	[kW]	38,1
_		•	• •	,
Flächenbez. Heizlast Abschätzung (387	m²)	[W/	m² BGF]	98,27

5 Typ: Bestand

Heizlast Abschätzung Obererstadtplatz 7-8 - Kindergarten I

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die Dimensionierung ist eine Heizlast-Berechnung gemäß ÖNORM H 7500 erforderlich.

Dem Lüftungsleitwert liegt eine Nutzung von 24 Stunden mal 365 Tage zugrunde. Die erforderliche Leistung für die Warmwasserbereitung ist unberücksichtigt.

Bauteile

Obererstadtplatz 7-8 - Kindergarten I

(W) - Außenwand Na	aturetoin (im Mittal	0 0 m)				A 1/	V01
bestehend	aturstem (iiii wiitter	0,9 111)	von Innen na	ch Außen	Dicke	λ	d/λ
Kalkputz (außen)			В		0,0300	0,700	0,043
Natursteinmauerwerk			В		0,9000	2,300	0,391
Kalkputz (innen)			В		0,0300	0,800	0,038
			Rse+Rsi = 0,17	Dicke ges	amt 0,9600	U-Wert	1,56
(W) - Zwischenwand bestehend	l Naturstein (im Mit	tel 0,9 m)	von Innen na	ch Außen	Dicke	lW	01 d/λ
Kalkputz (außen)			В		0,0300	0,700	0,043
Natursteinmauerwerk			В		0,9000	2,300	0,391
Kalkputz (innen)			В		0,0300	0,800	0,038
			Rse+Rsi = 0,26	Dicke ges	amt 0,9600	U-Wert	1,37
(W) - Außenwand Na bestehend	aturstein (im Mittel	0,7 m)	von Innen na	ch Außen	Dicke	ΑV	V02 d/λ
Kalkputz (außen)			В		0,0300	0,700	0,043
Natursteinmauerwerk			В		0,7000	2,300	0,304
Kalkputz (innen)			В		0,0300	0,800	0,038
			Rse+Rsi = 0,17	Dicke ges	amt 0,7600	U-Wert	1,80
(W) - Außenwand Na bestehend	aturstein (im Mittel	0,5 m)	von Innen na	ch Außen	Dicke	ΑV	V03 d/λ
Kalkputz (außen)			В		0,0300	0,700	0,043
Natursteinmauerwerk			В		0,5000	2,300	0,217
Kalkputz (innen)			В		0,0300	0,800	0,038
			Rse+Rsi = 0,17	Dicke ges	amt 0,5600	U-Wert	2,14
(W) - Zwischenwand bestehend	l Naturstein (im Mit	tel 0,5 m)	von Innen na	ch Außen	Dicke	ZW λ	/01 d / λ
Kalkputz (außen)			В		0,0300	0,700	0,043
Natursteinmauerwerk			В		0,5000	2,300	0,217
Kalkputz (innen)			В		0,0300	0,800	0,038
			Rse+Rsi = 0,26	Dicke ges	amt 0,5600	U-Wert	1,79
(D) - erdanliegender	Fußboden (<=1,5m	n unter Erd	dreich)			EB	
bestehend			von Innen na	ch Außen	Dicke	λ	d/λ
fiktiver Bestandsaufbau	(U-Wert = 1,000)		В		0,3000	0,361	0,830
			Rse+Rsi = 0,17	Dicke ges	amt 0,3000	U-Wert	1,00
(D) - Decke zu unko	nditioniertem unge	dämmten			5. .	KD	
bestehend			von Innen na	ch Außen	Dicke	λ	d/λ
fiktiver Bestandsaufbau	(U-Wert = 1,000)		В		0,3000	0,361	0,830
			Rse+Rsi = 0,34	Dicke ges	amt 0,3000	U-Wert	0,85
(D) - warme Zwische bestehend	endecke (Holztramo	decke)	von Innen na	ch Außen	Dicke	ZD λ	01 d/λ
Massivparkett			В		0,0250	0,160	0,156
Riegel dazw.			В	6,9 %		0,120	0,133
Luft			В	33,8 %	0,0600	0,313	0,173
Schüttung			В	28,1 %	0,0500	0,330	0,136
Holz			В	0.4.0/	0,0240	0,120	0,200
Riegel dazw.			В	3,1 %	0.0500	0,120	0,133
Luft			В	28,1 %	0,0500	0,313	0,144
Putzträgerplatte Putz			B B		0,0250 0,0150	0,090 0,700	0,278 0,021
, are	RTo 1,4728 R	Tu 1,4518		Dicko nos	amt 0,2490	U-Wert	0,68
Riegel:		300 Breite	0,080	Dicke ges	Rse+Rsi 0,		0,00
yo	, 1011040014114 0,0	, co Dioito	3,000		. 130 - 1101 0,		

Bauteile

Obererstadtplatz 7-8 - Kindergarten I

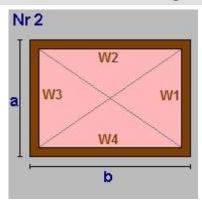
(D) - warme Zwische	endecke (Kappe	endeck	e / Zieg	eldecke)			ZD02	
bestehend			Ĭ	von Innen r	nach Außen	Dicke	λ	d/λ
Massivparkett				В		0,0250	0,160	0,156
Lattung dazw.				В	10,0 %	0,0250	0,120	0,021
Luft steh., W-Fluss n	. oben 21 < d <=	25 mm		В	90,0 %		0,167	0,135
1.202.04 Stampfbeton				В		0,0600	1,500	0,040
1.102.06 Vollziegelmau	erwerk			В		0,1200	0,760	0,158
	RTo 0,7693	RTu	0,7682	RT 0,7688	Di	cke gesamt 0,2300	U-Wert	1,30
Lattung:	Achsabstand	0,800	Breite	0,080		Rse+Rsi 0	,26	
(D) - warme Zwische	endecke (Abhai	ngdeck	e)					003
bestehend				von Innen r	nach Außen	Dicke	λ	d/λ
Massivparkett				В		0,0250	0,160	0,156
Riegel dazw.				В	6,9 %		0,120	0,133
Luft				В	33,8 %	0,0600	0,313	0,173
Schüttung				В	28,1 %	0,0500	0,330	0,136
Holz				В		0,0240	0,120	0,200
Riegel dazw.				В	3,1 %		0,120	0,133
Luft				В	28,1 %	0,0500	0,313	0,144
Holz				В		0,0240	0,120	0,200
Luftschicht ruhend (100				В		0,1000	0,625	0,160
Holzverkleidung (Abhan	•			В		0,0240	0,120	0,200
	RTo 1,7367		1,7126	RT 1,7246	Di	cke gesamt 0,3570	U-Wert	0,58
Riegel:	Achsabstand	0,800	Breite	0,080		Rse+Rsi 0	,26	
(W) - Außenwand Ar	nbau 1970						AV	V04
bestehend				von Innen r	nach Außen	Dicke	λ	d/λ
Innenputz				В		0,0150	0,700	0,021
Hochlochziegel (Altbest (1200 kg/m³)	and vor 1980) + N	lormalm	auermör	tel B		0,3000	0,500	0,600
Außenputz				В		0,0100	0,800	0,013
				Rse+Rsi = 0,17	Di	cke gesamt 0,3250	U-Wert	1,24
(D) - Außendecke zu	ı Terrasse, Anb	au 197	0				FD	01
bestehend				von Außen	nach Innen	Dicke	λ	d/λ
fiktiver Bestandsaufbau	(U-Wert = 0.650)			В		0,3000	0,215	1,398

Rse+Rsi = 0,14

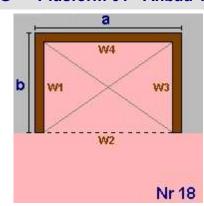
Dicke gesamt 0,3000

Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K], Dichte [kg/m³], λ [W/mK] *... Schicht zählt nicht zum U-Wert F... enthält Flächenheizung B... Bestandsschicht RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946

U-Wert


0,65

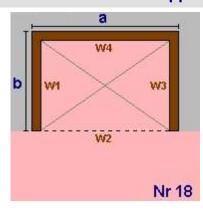
Geometrieausdruck


Obererstadtplatz 7-8 - Kindergarten I

EG Grundform Kindergarten


```
b = 25,65
a = 14,35
lichte Raumhöhe = 2,70 + \text{obere Decke: } 0,25 \Rightarrow 2,95m
BGF
          368,08m<sup>2</sup> BRI 1 085,46m<sup>3</sup>
Wand W1
           42,32m² ZW01 (W) - Zwischenwand Naturstein (im Mit
Wand W2
           57,65m<sup>2</sup> AW01 (W) - Außenwand Naturstein (im Mittel
          Teilung
                     6,10 x 2,95 (Länge x Höhe)
           17,99m<sup>2</sup> AW03 (W) - Außenwand Naturstein (im Mittel
Wand W3
           42,32m² IW01 (W) - Zwischenwand Naturstein (im Mit
Wand W4
           47,63m² AW02 (W) - Außenwand Naturstein (im Mittel
          Teilung 9,50 x 2,95 (Länge x Höhe)
           28,02m² AW03 (W) - Außenwand Naturstein (im Mittel
Decke
          168,08m<sup>2</sup> ZD01 (D) - warme Zwischendecke (Holztramde
Teilung 145,00m<sup>2</sup> ZD02
           55,00m<sup>2</sup> ZD03
Teilung
          334,08\mathrm{m}^2 EB01 (D) - erdanliegender Fußboden (<=1,5\mathrm{m}
Boden
Teilung
          34,00m² KD01
```

EG Plusform 01 - Anbau 1970


```
a = 1,16
                b = 6,18
lichte Raumhöhe = 2,70 + \text{obere Decke: } 0,30 \Rightarrow 3,00m
             7,17m² BRI
                               21,51m^3
BGF
Wand W1
            18,54m<sup>2</sup> AW04 (W) - Außenwand Anbau 1970
Wand W2
            -3,48m² AW01 (W) - Außenwand Naturstein (im Mittel
            18,54m<sup>2</sup> AW04 (W) - Außenwand Anbau 1970
Wand W3
             3,48m<sup>2</sup> AW04
Wand W4
Decke
             7\text{,}17\text{m}^{2} FD01 (D) - Außendecke zu Terrasse, Anbau 1
             7,17 \rm{m^2} EB01 (D) - erdanliegender Fußboden (<=1,5 \rm{m}
Boden
```

EG Plusform 02 - Gruppenraum 2 (Abhangdecke)

a = 5,92

b =

2,05

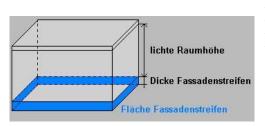
EG Summe

EG Bruttogrundfläche [m²]: 387,38 EG Bruttorauminhalt [m³]: 1 144,07

Deckenvolumen EB01

Fläche $353,38 \text{ m}^2 \times \text{Dicke } 0,30 \text{ m} = 106,01 \text{ m}^3$

Geometrieausdruck


Obererstadtplatz 7-8 - Kindergarten I

Deckenvolumen KD01

Fläche $34,00 \text{ m}^2 \times \text{Dicke } 0,30 \text{ m} = 10,20 \text{ m}^3$

Bruttorauminhalt [m³]: 116,21

Fassadenstreifen - Automatische Ermittlung

Wand		Boden	Dicke	Länge	Fläche
AW01	_	EB01	0,300m	18,39m	5,52m²
AW02	_	EB01	0,300m	16,15m	4,85m²
AW03	_	EB01	0,300m	15,60m	4,68m²
AW04	_	EB01	0,300m	11,47m	3,44m²
TWO1	_	EB01	0.300m	14.35m	4.31m²

Gesamtsumme Bruttogeschoßfläche [m²]: 387,38 Gesamtsumme Bruttorauminhalt [m³]: 1 260,28

Fenster und Türen Obererstadtplatz 7-8 - Kindergarten I

Тур		Bauteil	Anz. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs	gtot	amsc
В		Prüfnorr	nmaß Typ 1 (T1)	1,23	1,48	1,82	1,30	1,65	0,060	1,41	1,54		0,61			
В			nmaß Typ 2 (T2)	1,23	1,48	1,82	1,30	1,65	0,060	1,23	1,56		0,61			
В			nmaß Typ 3 (T3)	1,23	1,48	1,82	3,20	1,80	0,040	1,23	2,84		0,71			
		Trumon	1111as Typ 0 (10)	1,20	1,40	1,02	0,20	1,00	0,040	3,87	2,04		0,7 1			
NO										-,						
в т2	EG	AW01	1 F03 - 4,00 x 1,80	4,00	1,80	7,20	1,30	1,65	0,060	5,07	1,59	11,47	0,61	0,50	1,00	0,00
В Т2	EG	AW03	1 F02 - 4,80 x 1,80	4,80	1,80	8,64	1,30	1,65	0,060	5,88	1,63	14,04	0,61	0,50	1,00	0,00
В Т2	EG	AW04	1 F04 - 2,85 x 1,80	2,85	1,80	5,13	1,30	1,65	0,060	3,24	1,67	8,56	0,61	0,50	1,00	0,00
В Т2	EG	AW04	2 F05 - 1,10 x 1,40	1,10	1,40	3,08	1,30	1,65	0,060	1,54	1,75	5,40	0,61	0,50	1,00	0,00
В	EG	AW04	1 T02 - 0,90 x 2,00	0,90	2,00	1,80					1,40	2,52				
			6			25,85				15,73		41,99				
NW																
В Т2	EG	AW04	2 F05 - 1,10 x 1,40	1,10	1,40	3,08	1,30	1,65	0,060	1,54	1,75	5,40	0,61	0,50	1,00	0,00
В Т2	EG	AW04	1 F06 - 0,90 x 1,80	0,90	1,80	1,62	1,30	1,65	0,060	0,78	1,78	2,88	0,61	0,50	1,00	0,00
B T1	EG	AW04	1 F07 - 0,90 x 0,30	0,90	0,30	0,27	1,30	1,65	0,060	0,10	1,91	0,51	0,61	0,50	1,00	0,00
В	EG	AW04	1 T02 - 0,90 x 2,00	0,90	2,00	1,80					1,40	2,52				
			5			6,77				2,42		11,31				
SO																
B T2	EG	AW04	1 F05 - 1,10 x 1,40	1,10	1,40	1,54	1,30	1,65	0,060	0,77	1,75	2,70	0,61	0,50	1,00	0,00
			1			1,54				0,77		2,70				
SW																
в тз	EG	AW02	5 F01 - 1,10 x 1,50	1,10	1,50	8,25	3,20	1,80	0,040	5,42	2,82	23,28	0,71	0,50	1,00	0,00
в тз	EG	AW03	2 F01 - 1,10 x 1,50	1,10	1,50	3,30	3,20	1,80	0,040	2,17	2,82	9,31	0,71	0,50	1,00	0,00
В	EG	AW03	1 T01 - 1,80 x 2,20	1,80	2,20	3,96					1,67	6,61				
			8			15,51				7,59		39,20				
Summe	<u> </u>		20			49,67				26,51		95,20				

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor

B... Fenster gehört zum Bestand des Gebäudes

gtot ... Gesamtenergiedurchlassgrad der Verglasung inkl. Abschlüsse

amsc... Param. zur Bewert. der Aktivierung von Sonnenschutzeinricht. Sommer

Typ... Prüfnormmaßtyp

Rahmen Obererstadtplatz 7-8 - Kindergarten I

Bezeichnung	Rb.re.	Rb.li.	Rb.o.	Rb.u.	%	Stulp Anz.	Stb. Pfo		1	. V-Sp. Anz.	Spb.	
Typ 1 (T1)	0,080	0,080	0,080	0,080	22							Kunststoff-Hohlprofil (58 < d < = 70 mm)
Typ 2 (T2)	0,120	0,120	0,120	0,120	33							Kunststoff-Hohlprofil (58 < d < = 70 mm)
Typ 3 (T3)	0,120	0,120	0,120	0,120	33							Holz-Rahmen Nadelholz (50 < d <
F01 - 1,10 x 1,50	0,120	0,120	0,120	0,120	34							Holz-Rahmen Nadelholz (50 < d <
F02 - 4,80 x 1,80	0,120	0,120	0,120	0,120	32		4	0,120	1		0,120	· '
F03 - 4,00 x 1,80	0,120	0,120	0,120	0,120	30		2	0,120	1		0,120	·
F04 - 2,85 x 1,80	0,120	0,120	0,120	0,120	37		3	0,120	1		0,120	,
F05 - 1,10 x 1,40	0,120	0,120	0,120	0,120	50		1	0,120	1		0,120	,
F06 - 0,90 x 1,80	0,120	0,120	0,120	0,120	52		1	0,120	1		0,120	,
F07 - 0,90 x 0,30	0,080	0,080	0,080	0,080	62							Kunststoff-Hohlprofil (58 < d < = 70 mm)

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m]
Stb. Stulpbreite [m] H-Sp. Anz Anzahl der horizontalen Sprossen
Pfb. Pfostenbreite [m] V-Sp. Anz Anzahl der vertikalen Sprossen

Pfb. Pfostenbreite [m] Typ Prüfnormmaßtyp

% Rahmenanteil des gesamten Fensters Spb. Sprossenbreite [m]

Kühlbedarf Standort Obererstadtplatz 7-8 - Kindergarten I

Kühlbedarf Standort (Waidhofen an der Ybbs)

BGF $387,38~\text{m}^2$ L T 739,43~W/K Innentemperatur 26 °C fcorr 1,40

BRI 1 260,28 m³

Gesamt	365		103 636	16 255	119 891	17 866	8 619	26 485		0
Dezember	31	0,86	13 831	2 186	16 017	1 522	242	1 764	1,00	0
November	30	4,77	11 301	1 765	13 066	1 465	317	1 782	1,00	0
Oktober	31	10,29	8 645	1 366	10 011	1 522	560	2 082	1,00	0
September	30	15,69	5 486	857	6 344	1 465	802	2 267	0,99	0
August	31	19,11	3 791	599	4 390	1 522	1 046	2 568	0,94	0
Juli	31	19,64	3 499	553	4 051	1 522	1 155	2 676	0,92	0
Juni	30	17,88	4 322	675	4 997	1 465	1 097	2 563	0,96	0
Mai	31	14,51	6 318	999	7 317	1 522	1 114	2 636	0,99	0
April	30	10,24	8 391	1 311	9 701	1 465	869	2 334	1,00	0
März	31	5,48	11 287	1 784	13 071	1 522	672	2 194	1,00	0
Februar	28	1,46	12 193	1 855	14 048	1 352	447	1 800	1,00	0
Jänner	31	-0,49	14 572	2 303	16 876	1 522	298	1 819	1,00	0
		temperaturen °C	verluste kWh	verluste kWh	kWh	kWh	kWh	kWh	3 3	kWh
Monate	Tage	Mittlere Außen-	Transm wärme-	Lüftungs- wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Ausnut- zungsgrad	Kühl- bedarf

 $KB = 0,00 \text{ kWh/m}^2\text{a}$

Außen induzierter Kühlbedarf Referenzklima Obererstadtplatz 7-8 - Kindergarten I

Außen induzierter Kühlbedarf Referenzklima

BGF 387,38 m² Lт 739,43 W/K Innentemperatur 26 °C fcorr 1,40

Typ: Bestand

BRI 1 260,28 m³

Gesamt	365		94 778	5 267	100 045	0	8 895	8 895		0
Dezember	31	2,19	13 099	728	13 827	0	238	238	1,00	0
November	30	6,16	10 563	587	11 150	0	307	307	1,00	0
Oktober	31	11,64	7 900	439	8 339	0	570	570	1,00	0
September	30	17,03	4 776	265	5 041	0	814	814	1,00	0
August	31	20,56	2 993	166	3 159	0	1 046	1 046	0,99	0
Juli	31	21,12	2 685	149	2 834	0	1 209	1 209	0,98	0
Juni	30	19,33	3 551	197	3 748	0	1 176	1 176	0,99	0
Mai	31	16,20	5 391	300	5 691	0	1 164	1 164	1,00	0
April	30	11,62	7 656	425	8 081	0	897	897	1,00	0
März	31	6,81	10 557	587	11 144	0	699	699	1,00	0
Februar	28	2,73	11 563	643	12 205	0	476	476	1,00	0
Jänner	31	0,47	14 045	781	14 826	0	298	298	1,00	0
		temperaturen	wärme- verluste kWh	verluste kWh	kWh	kWh	kWh	kWh	zungsgrau	kWh
Monate	Tage	Mittlere Außen-	Transm	Lüftungs- wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Ausnut- zungsgrad	Kühl- bedarf

KB* = 0,00 kWh/m³a

RH-Eingabe

Obererstadtplatz 7-8 - Kindergarten I

Raumheizung

Typ: Bestand

Allgemeine Daten

Wärmebereitstellung gebäudezentral

<u>Abgabe</u>

Haupt Wärmeabgabe Radiatoren, Einzelraumheizer

Systemtemperatur 55°/45°

Regelfähigkeit Heizkörper-Regulierungsventile von Hand betätigt

Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert) Heizkostenabrechnung

<u>Verteilung</u>				Leitungsläng	en It. Defaultwerten
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturer		konditioniert [%]
Verteilleitungen	Ja	2/3	Ja	22,38	0
Steigleitungen	Ja	2/3	Ja	30,99	100
Anbindeleitunge	n Ja	1/3	Ja	216,93	

Speicher kein Wärmespeicher vorhanden

Bereitstellung

Bereitstellungssystem Nah-/Fernwärme

Energieträger Fernwärme aus Heizwerk (erneuerbar)

Betriebsweise gleitender Betrieb

Hilfsenergie - elektrische Leistung

Umwälzpumpe 79,09 W Defaultwert

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

WWB-Eingabe

Obererstadtplatz 7-8 - Kindergarten I

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

getrennt von Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Wärmeverteilu</u>	ıng ohne	<u>Zirkulation</u>		Leitungslängen lt. Defaultwerten					
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]				
Verteilleitungen	Ja	2/3	Ja	11,03	0				
Steigleitungen	Ja	2/3	Ja	15,50	0				
Stichleitungen				18,59	Material Stahl 2,42 \	N/m			

Speicher

Art des Speichers indirekt beheizter Speicher

Standort nicht konditionierter Bereich mit Anschluss Heizregister Solaranlage

Baujahr Vor 1978 Anschlussteile gedämmt

Nennvolumen 542 l Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher q $_{b,WS}$ = 6,69 kWh/d Defaultwert

Bereitstellung

Bereitstellungssystem Stromheizung direkt

<u> Hilfsenergie - elektrische Leistung</u>

Speicherladepumpe 67,55 W Defaultwert

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

Endenergiebedarf

Obererstadtplatz 7-8 - Kindergarten I

- Dorototaatpiatz / O Timidolgarton /				
<u>Endenergiebedarf</u>				
Heizenergiebedarf	Q_{HEB}	=	83 703 kWh/a	
Kühlenergiebedarf	Q_KEB	=	0 kWh/a	
Beleuchtungsenergiebedarf	Q_{BelEB}	=	7 686 kWh/a	
Betriebsstrombedarf	Q_{BSB}	=	814 kWh/a	
Netto-Photovoltaikertrag	NPVE	=	0 kWh/a	
Endenergiebedarf	Q _{EEB}	=	92 203 kWh/a	
Heizenergiebedarf - HEB				
Heizenergiebedarf	\mathbf{Q}_{HEB}	=	83 703 kWh/a	
Heiztechnikenergiebedarf	Q_{HTEB}	=	6 736 kWh/a	

Warmwasserwärmebedarf Q_{tw} = 1 042 kWh/a

rmwasserk	pereitung	
Q _{TW WA} =	97 kWh/a	
	667 kWh/a	
	2 749 kWh/a	
$Q_{TW,WB} =$	23 kWh/a	
Q _{TW} =	3 536 kWh/a	
Q _{TW.WV.HE} =	0 kWh/a	
Q _{TW,WS,HE} =	78 kWh/a	
$Q_{TW,WB,HE} =$	0 kWh/a	
Q _{TW,HE} =	78 kWh/a	
$Q_{HTEB,TW} =$	3 536 kWh/a	
Q _{HEB,TW} =	4 578 kWh/a	
	Q _{TW,WA} = Q _{TW,WV} = Q _{TW,WS} = Q _{TW,WB} = Q _{TW,WV,HE} = Q _{TW,WS,HE} = Q _{TW,WB,HE} = Q _{TW,WB,HE} = Q _{TW,HE} =	Q _{TW,WV} = 667 kWh/a Q _{TW,WS} = 2749 kWh/a Q _{TW,WB} = 23 kWh/a Q _{TW,WB} = 3 536 kWh/a Q _{TW,WV,HE} = 0 kWh/a Q _{TW,WS,HE} = 78 kWh/a Q _{TW,WB,HE} = 0 kWh/a Q _{TW,WB,HE} = 78 kWh/a Q _{TW,HE} = 78 kWh/a Q _{TW,HE} = 3 536 kWh/a

Endenergiebedarf Obererstadtplatz 7-8 - Kindergarten I

Transmissionswärmeverluste Lüftungswärmeverluste	${f Q}_{f V}$	=	77 726 kWh/a 12 187 kWh/a
Wärmeverluste	Q _I	=	89 913 kWh/a
Solare Wärmegewinne Innere Wärmegewinne	Q _s Q _i	=	4 100 kWh/a 9 631 kWh/a
Wärmegewinne	$\overline{\mathtt{Q}_{g}}$	=	13 731 kWh/a
Heizwärmebedarf	Q_h	=	75 925 kWh/a

	Raumh	neiz	zung
Wärmeverluste			
Abgabe	$Q_{H,WA}$	=	3 294 kWh/a
Verteilung		=	6 781 kWh/a
Speicher	_	=	0 kWh/a
Bereitstellung		=	1 546 kWh/a
	Q_H	=	11 621 kWh/a
Hilfsenergiebedarf			
Abgabe	$Q_{H,WA,HE}$	=	0 kWh/a
Verteilung	$Q_{H,WV,HE}$		198 kWh/a
Speicher	_		0 kWh/a
Bereitstellung	_	=	0 kWh/a
	$\mathbf{Q}_{H,HE}$	=	198 kWh/a
Heiztechnikenergiebedarf Raumheizung	$Q_{HTEB,H} =$:	2 924 kWh/a
Heizenergiebedarf Raumheizung	$\mathbf{Q}_{HEB,H}$	=	78 849 kWh/a

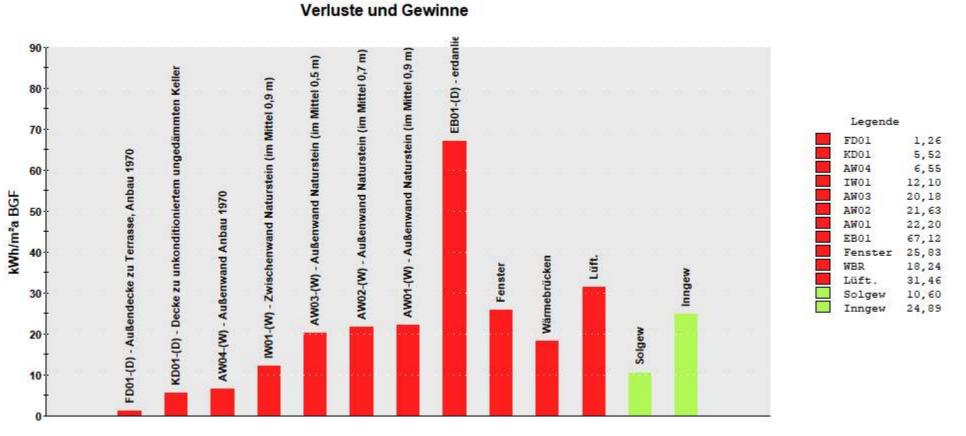
Zurückgewinnbare Verluste

Raumheizung	Q _{H,beh} =	9 075 kWh/a
Warmwasserbereitung	Q _{TW beb} =	252 kWh/a

Beleuchtung Obererstadtplatz 7-8 - Kindergarten I

Beleuchtung


gemäß ÖNORM H 5059-1:2019-01-15


Berechnung: Defaultwert

Beleuchtungsenergiebedarf BelEB 19,84 kWh/m²a

Ausdruck Grafik Obererstadtplatz 7-8 - Kindergarten I

Gesamtenergieeffizienzfaktor gemäß ÖNORM H 5050-1:2019 (Referenzklimabedingungen)

Obererstadtplatz 7-8 - Kindergarten I				
Brutto-Grundfläche Brutto-Volumen Gebäude-Hüllfläche Kompaktheit charakteristische Länge (Ic)	387 1 260 642 0,51 1,96	m³ m² 1/m		
HEB _{RK}	190,4	kWh/m²a	(auf Basis HWB _{RK} 172,4 kWh/m²a)	
HEBRK,26	24,8	kWh/m²a	(auf Basis HWB _{RK,26} 56,9 kWh/m²a)	
KEB _{RK}	0,0	kWh/m²a		
KEB _{RK,26}	0,0	kWh/m²a	(bezogen auf eine Geschoßhöhe von 3,00 m)	
BelEB	19,8	kWh/m²a		
BelEB ₂₆	21,5	kWh/m²a	(bezogen auf eine Geschoßhöhe von 3,00 m)	
BSB	2,1	kWh/m²a		
BSB ₂₆	2,3	kWh/m²a	(bezogen auf eine Geschoßhöhe von 3,00 m)	
EEB _{RK}	212,3	kWh/m²a	EEB _{RK} = HEB _{RK} + KEB _{RK} + BelEB + BSB - PVE	
EEB _{RK,26}	92,4	kWh/m²a	EEB _{RK,26} = HEB _{RK,26} + KEB _{RK,26} + BelEB ₂₆ + BSB ₂₆	
f gee,RK	2,30	f _{GEE,RK} =	EEB RK / EEB RK,26	

2,34

f GEE,SK

Gesamtenergieeffizienzfaktor gemäß ÖNORM H 5050-1:2019 (Standortklimabedingungen)

Obererstadtplatz 7-8 - Kindergarten I				
Brutto-Grundfläche Brutto-Volumen Gebäude-Hüllfläche Kompaktheit charakteristische Länge (lc)	387 m ² 1 260 m ³ 642 m ² 0,51 1/r 1,96 m	3 2 m		
HEB _{SK}	216,1 kW	Vh/m²a	(auf Basis HWB _{SK}	196,6 kWh/m²a)
HEB SK,26	28,4 kW	Vh/m²a	(auf Basis HWB _{SK,26}	56,9 kWh/m²a)
KEB _{SK} KEB _{SK,26} BelEB	0,0 kW 0,0 kW 19,8 kW	Vh/m²a	(bezogen auf eine Ges	schoßhöhe von 3,00 m)
BelEB ₂₆ BSB	21,5 kW		(bezogen auf eine Ges	schoßhöhe von 3,00 m)
BSB ₂₆	2,3 kW		(bezogen auf eine Ges	schoßhöhe von 3,00 m)
EEB SK EEB SK,26	238,0 kW			KEB _{SK} + BelEB + BSB - PVE ₂₆ + KEB _{SK,26} + BelEB ₂₆ + BSB ₂₆

 $f_{GEE,SK} = EEB_{SK} / EEB_{SK,26}$

Eingang am 18. Feb. 2025 ZEUS Nr. 3329.25.30899.01

Typ: Bestand

Energiekennzahlen für die Anzeige in Druckwerken und elektronischen Medien

Energieausweis-Vorlage-Gesetz 2012 - EAVG 2012

Obererstadtplatz 7-8 - Kindergarten I Bezeichnung

Gebäudeteil Kindergarten (EG)

Nutzungsprofil Bildungseinrichtungen Baujahr 1550

Straße Obererstadtplatz 7-8 Katastralgemeinde Waidhofen an der Ybbs

PLZ/Ort 3340 Waidhofen an der Ybbs KG-Nr. 3329 Grundstücksnr. 8 Seehöhe 355 m

Energiekennzahlen It. Energieausweis

f_{GEE,SK} **2,34** HWB_{Ref,SK} 191

Energieausweis Ausstellungsdatum 18.02.2025 Gültigkeitsdatum 17.02.2035

f_{GEE}

- Der Energieausweis besteht aus den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser Richtlinie festgelegten Layout und
 - einem technischen Anhang

HWB Ref Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger

Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem

Referenz-Endenergiebedarf (Anforderung 2007).

SK Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

EAVG §3 Wird ein Gebäude oder ein Nutzungsobjekt in einem Druckwerk oder einem elektronischen Medium zum Kauf oder zur In-Bestand-Nahme angeboten, so sind in der Anzeige der Heizwärmebedarf und der Gesamtenergieeffizienz-Faktor des Gebäudes oder des Nutzungsobjekts anzugeben. Diese Pflicht gilt sowohl für den Verkäufer oder Bestandgeber als auch

für den von diesem beauftragten Immobilienmakler.

EAVG §4 (1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einen zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.

Wird dem Käufer oder Bestandnehmer vor Abgabe seiner Vertragserklärung ein Energieausweis vorgelegt, so gilt die darin EAVG §6 angegebene Gesamtenergieeffizienz des Gebäudes als bedungene Eigenschaft im Sinn des § 922 Abs. 1 ABGB.

(1) Wird dem Käufer oder Bestandnehmer entgegen § 4 nicht bis spätestens zur Abgabe seiner Vertragserklärung ein EAVG §7 Energieausweis vorgelegt, so gilt zumindest eine dem Alter und der Art des Gebäudes entsprechende Gesamtenergieeffizienz als vereinbart.

(2) Wird dem Käufer oder Bestandnehmer entgegen § 4 nach Vertragsabschluss kein Energieausweis ausgehändigt, so kann er entweder sein Recht auf Ausweisaushändigung gerichtlich geltend machen oder selbst einen Energieausweis einholen und die ihm daraus entstandenen Kosten vom Verkäufer oder Bestandgeber ersetzt begehren.

Vereinbarungen, die die Vorlage- und Aushändigungspflicht nach § 4, die Rechtsfolge der Ausweisvorlage nach § 6, die EAVG §8 Rechtsfolge unterlassener Vorlage nach § 7 Abs. 1 einschließlich des sich daraus ergebenden Gewährleistungsanspruchs oder die Rechtsfolge unterlassener Aushändigung nach § 7 Abs. 2 ausschließen oder einschränken, sind unwirksam.

EAVG §9 (1) Ein Verkäufer, Bestandgeber oder Immobilienmakler, der es entgegen § 3 unterlässt, in der Verkaufs- oder In-Bestand-Gabe-Anzeige den Heizwärmebedarf und den Gesamtenergieeffizienz-Faktor des Gebäudes oder des Nutzungsobjekts anzugeben, begeht, sofern die Tat nicht den Tatbestand einer gerichtlich strafbaren Handlung erfüllt oder nach anderen Verwaltungsstrafbestimmungen mit strengerer Strafe bedroht ist, eine Verwaltungsübertretung und ist mit einer Geldstrafe bis zu 1 450 Euro zu bestrafen. Der Verstoß eines Immobilienmaklers gegen § 3 ist entschuldigt, wenn er seinen Auftraggeber über die Informationspflicht nach dieser Bestimmung aufgeklärt und ihn zur Bekanntgabe der beiden Werte beziehungsweise zur Einholung eines Energieausweises aufgefordert hat, der Auftraggeber dieser Aufforderung jedoch nicht nachgekommen ist.

(2) Ein Verkäufer oder Bestandgeber, der es entgegen § 4 unterlässt,

1. dem Käufer oder Bestandnehmer rechtzeitig einen höchstens zehn Jahre alten Energieausweis vorzulegen oder

2. dem Käufer oder Bestandnehmer nach Vertragsabschluss einen Energieausweis oder eine vollständige Kopie desselben auszuhändigen, begeht, sofern die Tat nicht den Tatbestand einer gerichtlich strafbaren Handlung erfüllt oder nach anderen Verwaltungsstrafbestimmungen mit strengerer Strafe bedroht ist, eine Verwaltungsübertretung und ist mit einer Geldstrafe bis zu 1450 Euro zu bestrafen.

Eingang am 18. Feb. 2025 **ZEUS Nr. 3329.25.30899.01**

Typ: Bestand

Vorlagebestätigung

Energieausweis-Vorlage-Gesetz 2012 – EAVG 2012

Bezeichnung Obererstadtplatz 7-8 - Kindergarten I

Gebäudeteil Kindergarten (EG)

Nutzungsprofil Bildungseinrichtungen Baujahr 1550

Straße Obererstadtplatz 7-8 Katastralgemeinde Waidhofen an der Ybbs

PLZ/Ort 3340 Waidhofen an der Ybbs KG-Nr. 3329
Grundstücksnr. 8 Seehöhe 355 m

Energiekennzahlen It. Energieausweis

HWB_{Ref,SK} 191 f_{GEE,SK} 2,34

Der Energieausweis besteht aus -

- den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser Richtlinie festgelegten Layout und
- einem technischen Anhang

Der Vorlegende bestätigt, dass der Energieausweis vorgelegt wurde.				
Ort, Datum				
Name Van		Under a shaiffe Maria a san dan		
Name Vorl	egender	Unterschrift Vorlegender		
Der Intere	ssent bestätigt, dass ihm der Energieausweis vorge	elegt wurde.		
Ort, Datum				
Name Inter	ressent	Unterschrift Interessent		
HWB Ref Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.				
f _{GEE}	Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).			
SK	Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.			
EAVG §4	AVG §4 (1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers eine zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.			

Eingang am 18. Feb. 2025 ZEUS Nr. 3329.25.30899.01 Typ: Bestand

Aushändigungsbestätigung

Energieausweis-Vorlage-Gesetz 2012 – EAVG 2012

Bezeichnung Obererstadtplatz 7-8 - Kindergarten I

Gebäudeteil Kindergarten (EG)

1550 Nutzungsprofil Bildungseinrichtungen Baujahr

Straße Obererstadtplatz 7-8 Katastralgemeinde Waidhofen an der Ybbs

PLZ/Ort 3340 Waidhofen an der Ybbs KG-Nr. 3329 Grundstücksnr. 8 Seehöhe 355 m

Energiekennzahlen It. Energieausweis

HWB_{Ref,SK} 191 f_{GEE,SK} 2,34

- Der Energieausweis besteht aus den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser Richtlinie festgelegten Layout und
 - einem technischen Anhang

Der Verkäufer/Bestandgeber bestätigt, dass der Energieausweis ausgehändigt wurde.				
Ort, Datum				
Name Verk	äufer/Bestandgeber	Unterschrift Verkäufer/Bestandgeber		
Der Käufe	r/Bestandnehmer bestätigt, dass ihm der Energieau	sweis ausgehändigt wurde.		
Ort, Datum				
Name Käu	fer/Bestandnehmer	Unterschrift Käufer/Bestandnehmer		
HWB _{Ref}	Der Referenz-Heizwärmebedarf ist iene Wärmemeng	e, die in den Räumen bereitgestellt werden muss, um diese auf einer		
	normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.			
f _{GEE}	Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).			
SK	Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.			
EAVG §4	EAVG §4 (1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers eine zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie			